NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

TESTING A LOW-INTERACTION HONEYPOT
AGAINST LIVE CYBER ATTACKERS

by
Erwin E. Frederick
September 2011

Thesis Advisor: Neil C. Rowe
Second Reader: Daniel F. Warren

Approved for public release; distribution is unlimited

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED
SEP 2011 N/A -
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Testing a L ow-Interaction Honeypot against Live Cyber Attackers £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School Monterey, CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

The development of honeypots as decoys designed to detect, investigate, and counter attack unauthorized
use of information systems has produced an armsrace between honeypots (computers designed solely to
receive cyber attacks) and anti-honeypot technology. To test the current state of thisrace, we performed
experimentsin which weran a small group of honeypots, using the low-interaction honeypot software
Honeyd, on a network outside campus firewall protection. For 15 weeks, we ran different configurations of
portsand service scripts, and simulated operating systemsto check which configurations wer e most useful
as aresearch honeypot and which were most useful as decoysto protect other network users. We analyzed
resultsin order toimprovethe resultsfor both purposesin subsequent weeks. We did find promising
configurationsfor both purposes, however, good configurations for one pur pose wer e not necessarily good
for the other. We also tested the limits of Honeyd softwar e and identified aspects of it that need to be
improved. We also identified the most common attacks, most common ports used by attackers, and degree
of success of decoy service scripts.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE SAR 89
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2011 Master’s Thesis

4. TITLE AND SUBTITLE Testing a Low-Interaction Honeypot against Live 5. FUNDING NUMBERS
Cyber Attackers

6. AUTHOR(S) Erwin E. Frederick

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol Number: N/A

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The development of honeypots as decoys designed to detect, investigate, and counterattack unauthorized use of
information systems has produced an “arms race” between honeypots (computers designed solely to receive cyber
attacks) and anti-honeypot technology. To test the current state of this race, we performed experiments in which we
ran a small group of honeypots, using the low-interaction honeypot software Honeyd, on a network outside campus
firewall protection.

For 15 weeks, we ran different configurations of ports and service scripts, and simulated operating systems to
check which configurations were most useful as a research honeypot and which were most useful as decoys to protect
other network users. We analyzed results in order to improve the results for both purposes in subsequent weeks. We
did find promising configurations for both purposes; however, good configurations for one purpose were not
necessarily good for the other. We also tested the limits of Honeyd software and identified aspects of it that need to be
improved. We also identified the most common attacks, most common ports used by attackers, and degree of success
of decoy service scripts.

14. SUBJECT TERMS honeypots, Honeyd, honeynet, deception 15. NUMBER OF
PAGES
89
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified 9]8]
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. 239.18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

TESTING A LOW-INTERACTION HONEYPOT
AGAINST LIVE CYBER ATTACKERS

Erwin E. Frederick
Lieutenant Commander, Chilean Navy
B.S., Naval Polytechnic Academy, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author: Erwin E. Frederick

Approved by: Neil C. Rowe, PhD
Thesis Advisor

Daniel F. Warren
Second Reader

Peter J. Denning, PhD
Chair, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The development of honeypots as decoys designed to detect, investigate, and
counterattack unauthorized use of information systems has produced an “arms
race” between honeypots (computers designed solely to receive cyber attacks)
and anti-honeypot technology. To test the current state of this race, we
performed experiments in which we ran a small group of honeypots, using the
low-interaction honeypot software Honeyd, on a network outside campus firewall
protection.

For 15 weeks, we ran different configurations of ports and service scripts,
and simulated operating systems to check which configurations were most useful
as a research honeypot and which were most useful as decoys to protect other
network users. We analyzed results in order to improve the results for both
purposes in subsequent weeks. We did find promising configurations for both
purposes; however, configurations good for one purpose were not necessarily
good for the other. We also tested the limits of Honeyd software and identified
aspects of it that need to be improved. We also identified the most common
attacks, most common ports used by attackers, and degree of success of decoy

service scripts.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

VI.

TABLE OF CONTENTS

INTRODUCTION s 1
PREVIOUS WORK AND BACKGROUNDccociiiiiiiiieeeeeeeeeeiiie e 3
A. HONEYPOTS .. 3
1. Variations of Honeypots According to Their Interaction
LBV e 3
2. Types of Honeypots According to Their Purpose 5
3. Types of Honeypots According to Their Implementation5
4. Types of Honeypots According to Their Side 6
5. HONBYNELS ..o 6
6. Monitoring Tools in a HONeypotcooovvviiiiiiiiieeeeeeen 6
B. ANTI-HONEYPOT TECHNOLOGYuu s 7
DESCRIPTION OF THE APPLICATIONS ... 11
A. HONEYD oo 11
1. Detection of HONeYd ... 12
B. VIMWARE ... s 13
1. Countermeasures against VMware Fingerprinting 14
C SINORT .ttt ettt ettt et ettt et et et e et eneeeeees 15
D WIRESHARK ..o s 15
E MICROSOFT LOG PARSER ... 16
F SECURITY ONIONttt 16
G FEDORA L4 ..o 16
METHODOLOGY ...ttt e e e e e e e e aaaa e e e e aeaes 17
A. OBUJECTIVES. ..ottt eeeeeeees 17
B. THE EXPERIMENT ...ouiiiiiiiiiiiiiiiiiieieiiiieeeeeeeseesesessesesseseesssssessssssseneeeees 18
C. SUMMARY OF CONFIGURATIONS USEDcccvvvvviiiiiiiiiiiiiiiiiieeee, 20
D. METHODOLOGY TO ANALYZE THE RESULTSciiiiiiiiiiieeiiis 22
ANALYSIS OF THE RESULTS ... 25
A. THE EXPERIMENT VIEWED FROM THE OUTSIDEccccoeeeenn... 25
B. HONEYD AS A HONEYPOT ..o 25
C. SNORT ALERTS ... e 28
D. PORT USAGEo 29
E. OPERATING SYSTEMS MORE ATTACKED........ccoiiiiiiiiiiiiiiiiin 30
F. SERVICE SCRIPTS ..ottt eeeeeeees 30
G. POSSIBLE COMPROMISE IN THE SYSTEMS RUNNING THE
HONEYPOTS .. s 31
H. HONEYD AS A DECOY ...ttt eeeeaeeee 31
CONCLUSIONS AND FUTURE WORKcottiiiiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeeeeeeee 35
A. CONCLUSIONS ... 35
B. FUTURE WORK ... 36

APPENDIX A. DETAILS OF THE CONFIGURATIONS USED BY WEEK 39

APPENDIX B. COMMANDS, CONFIGURATION, AND CODE USED............ 45
A. COMMANDS USED ..ot 45
B. HONEYD CONFIGURATION FILEcooviiiiieee, 46
C. SCRIPTS AND CODE USED.......cooviiiiiiii 49
APPENDIX C. NMAP OS DETECTION AGAINST HONEYD........ccccvvvviinnnnnn. 61
LIST OF REFERENCES. ... 69
INITIAL DISTRIBUTION LIST ..o 71

viii

Figure 1.
Figure 2.

Figure 3.

LIST OF FIGURES

NEtWOIrK arChitECIUIE.........iieieeeie e 19
Execution of traceroute from the outside on one IP address of the
=] 071V 0T 25
Flow diagram of the scripts and programs used to analyze the
FESUILS BVEIY WEEK.....cciieeeeeie et 49

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.

Table 15.
Table 16.

LIST OF TABLES

Honeypots according to interaction level.............cccovvvviiiiiee e, 4
Characteristics of some honeypots and ways to detect them............... 9
Statistics of alerts in weeks without Honeyd running............c.ccccvnn.... 26
Statistics of alerts in weeks 3—7 with Honeyd running..............cccc...... 26
Statistics of alerts in weeks 8-15 with Honeyd running...................... 26
Number of Honeyd interactions per week............ccooovviiiiiiiiiiiiieiinnnns 27
Number of Honeyd interactions by honeypots in week 4.................... 28
Number of Honeyd interactions by honeypots in week 6.................... 28
Summary of top 10 alerts in the experiment..........ccccoeeveeeevvveeiiiniennnn. 29
Percentage of alerts in production hosts and honeypots with

Honeyd running in WEEKS 1—7cceeeeiiiieeeiiiie e e e e 32
Percentage of alerts in production hosts and honeypots with

Honeyd running in Weeks 8—15coovvriiiiiiiei e 32
Detailed percentage of alerts in production hosts and honeypots

with Honeyd running in WeEKS 3—7ovvvviiiiiiieieeeeeeeceie e 33
Detailed percentage of alerts in production hosts and honeypots

with Honeyd running in weeks 8—15...........cccooiiiiieiiiiieiiiiiie e e 33
ModificatioNS IN TSEQ tEST.....uuuueiiiie e 64
ModificationNS IN TESIS TL—T 7 ..cooiiieeeeeeeeeeeee e 64
Modifications IN PU teSt.........uuuuiiiiii i 65

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

LIST OF ACRONYMS AND ABBREVIATIONS

CPU
FTP
HD
HTML
HTTP
IDE
IDS
IPS
MAC
NetBIOS
NIC
oS
PCAP
PCI
RST
scsl
SQL
SMTP
SSH
SYN
SYSLOG
TCP
VM

Central Processing Unit

File Transfer Protocol

Hard Disk

Hypertext Markup Language
Hypertext Transfer Protocol
Integrated Drive Electronics
Intrusion Detection System
Intrusion Prevention System
Media Access Control

Network Basic Input/Output System
Network Interface Card

Operating System

Packet Capture

Peripheral Component Interconnect
Reset (TCP Flag)

Small Computer System Interface
Structured Query language
Simple Mail Transfer Protocol
Secure Shell

Synchronize (TCP Flag)

System Logging

Transmission Control Protocol

Virtual Machine

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

| would like to thank the Chilean and U.S. navies for the privilege of
studying at the Naval Postgraduate School. Thank you also to Professor Neil
Rowe for his motivation, guidance, and support during my thesis study, and to
my second reader Professor Daniel Warren who taught me my the first course in
computer security. | also appreciate the support of Ms. Nova Jacobs for her
friendly, detailed, and accurate advice during the editing of this thesis.

| am especially thankful to my wife, Karla, for her patience and support,

and to my two daughters for inspiring and motivating me every day.

XV

THIS PAGE INTENTIONALLY LEFT BLANK

XVi

INTRODUCTION

In the last decade, the development of honeypots—decoys set to detect,
deflect, or counterattack an unauthorized use of information systems—has been
successful enough that attackers have been forced to develop techniques to
detect and neutralize honeypots when they are trying to attack networks. Some
of these techniques have been successful, leading some security professionals
to think that the use of honeypots is now outdated. However, there are also
countermeasures against this anti-honeypot technology.

A powerful and flexible tool that is freely available to deploy multiple
honeypots is Honeyd (Honey daemon), developed by Security expert Niels
Provos [1]. It allows a user to set up and run multiple virtual hosts on a network
with services and specific operating systems running. According to its creator,
Honeyd could be used for two purposes: as a honeypot, attracting attackers that
later could be traced, analyzed, and investigated, and as decoy or distraction,
hiding real systems in the middle of virtual systems. The purpose of this study is
to analyze how useful Honeyd is for both purposes, and to assess which actions
or countermeasures could be useful to improve its performance against possible
attackers.

We set up an experiment using a small network on the NPS campus that
is not protected by the campus firewall. We ran a group of honeypots created
with the aforementioned software and tested them in different runs with different
configurations. During the experiment, we analyzed results week by week to
identify the best configuration of Honeyd for both research and decoy purposes.
We tried to test as many features of Honeyd as possible, such as simulation of
open, closed, or filtered ports, and emulation of operating systems at TCP/IP
stack level, service scripts associated to certain well-known ports. In order to
create a credible set of virtual machines, we also tested small details like
changes in the MAC addresses, set drop rates, set uptime, and the use of proxy

and tarpit capabilities to create a credible set of virtual machines.

In Chapter 1l, we provide background for this thesis. In Chapter Il we
describe the applications and software used to set and analyze the results of the
experiment. In Chapter 1V, we describe the methodology applied to execute and
analyze the experiments in this study. In Chapter V, we analyze results obtained
in the experiments: alerts, operating systems emulation, ports attacked, service
scripts, Honeyd as a honeypot, and Honeyd as decoy. In Chapter VI, we state
conclusions obtained in this study and possible future work. Three appendices
provide details of the configurations used each week, the text of the code and
commands used, and an analysis of the Nmap operating system detection in

relation to Honeyd.

. PREVIOUS WORK AND BACKGROUND

A. HONEYPOTS

The concept of warfare in cyberspace is very similar to that of
conventional warfare.

Understanding our capabilities and vulnerabilities, and those of our
adversaries, allows us to create better defensive and offensive plans. Before
1999, there was very little information about cyber-attacker threats and
techniques. Although there were some previous attempts to obtain information
about attackers, the creation of the Honeynet Project [2] was the answer to that
lack of knowledge. This project is an international nonprofit research organization
that collects and analyzes cyber-attacks using a creative-attack data collection
tool, the honeypot.

A honeypot is a trap set to detect, analyze, or in some manner counteract
attempts of unauthorized use of information systems. Generally, it consists of a
computer, data, or network site which seems to contain information or resources
of value to attackers, but is actually isolated, protected, and monitored.

The value of a honeypot lies in the fact that its use is unauthorized or illicit
[2] because it is not designated as a production component of an information
infrastructure. Nobody outside the creator of the honeypot should be using or
interacting with honeypots; any interaction with a honeypot is not authorized and

is therefore suspicious. Because of this, there are no false positives.

1. Variations of Honeypots According to Their Interaction Level

There are two main categories of honeypots: Low-interaction and high-
interaction [3].

Low-interaction honeypots are passive, and cyber attackers are limited to
emulated services instead of actual operating systems. They are generally easier

to deploy and pose minimal risk to the administrators. Examples of low-

interaction honeypots are Honeyd, LaBrea Tarpit, BackOfficer Friendly, Specter,

and KFSensor.

High-interaction honeypots provide working operating systems and

applications for attackers to interact with. They are more complex and serve as

better intelligence-collection tools. However, they pose a higher level of risk to

the administrator due to their potential of being compromised by cyber attackers,

as for instance, with the use of compromised honeypots to propagate other

attacks. Examples are the Symantec Decoy Server (formerly ManTrap) and

honeynets as an architecture (as opposed to a product or software).

Table 1 summarizes honeypots according to their interaction level.

Low-interaction

High-interaction

Honeypot emulates operating

systems, services and network stack.

Full operating systems, applications,
and services are provided.

Easy to install and deploy. Usually

requires simply instaling and

configuring software on a computer.

Can be complex to install and deploy
(although commercial versions tend to

be simpler).

Captures limited amounts of
information, mainly transactional data

and some limited interaction.

Can capture far more information,
including new tools, communications,

and attacker keystrokes.

Minimal risk of compromise, as the

emulated services control what

attackers can and cannot do.

Increased risk of compromise, as

attackers are provided with real
operating systems with which to

interact.

Table 1.

Honeypots according to interaction level

2. Types of Honeypots According to Their Purpose

Honeypots can be deployed as production or research systems [3]. When
deployed as production systems, typically in an enterprise or military network,
honeypots can serve to prevent, detect, bait, and respond to attacks. When
deployed as research systems, typically in a university or institute, they serve to

collect information on threats for analysis, study, and security enhancement.

3. Types of Honeypots According to Their Implementation

Another distinction exists between physical and virtual honeypots [3].
Physical means that the honeypot is running on a real machine, suggesting that it
could be high-interaction and able to be compromised completely. Physical
honeypots are expensive to maintain and install, making them impractical to
deploy for large address spaces.

Virtual honeypots use one real machine to run one or more virtual
machines that act as honeypots. This allows for easier maintenance and lower
physical requirements. Usually VMware and User-mode Linux (UML) are used to
set up these honeypots.

While reducing hardware requirements for the administrators, virtual
honeypots give cyber attackers the perspective of independent systems in
networks. This reduces the cost of management of the honeypots for production
and research, compared to physical honeypots. There are, however,
disadvantages. The use of the virtual machines is limited by the hardware
virtualization software and the host operating system. The secure management
of the host operating system and virtualization software has to be thoroughly
planned and executed in order to prevent cyber attackers from seizing control of
the host system, and eventually the entire honeynet. It is also easier to fingerprint
a virtual honeynet, as opposed to honeynets deployed with real hardware, by the

presence of virtualization software and signatures of the virtual hardware

emulated by the virtualization software. Cyber attackers may potentially identify
these signatures and avoid these machines, thereby defeating the purpose of

deploying the honeynet.

4. Types of Honeypots According to Their Side

The last distinction is between server-side and client-side honeypots [3].
Traditional, server-side honeypots are servers which wait passively to be
attacked, possibly offering bait. Client honeypots, by contrast, are active devices
in search of malicious servers or other dangerous Internet locations that attack
clients. The client honeypot appears to be a normal client as it interacts with a
suspicious server and then examines whether an attack has occurred. The main
target of client honeypots is Web browsers, but any client that interacts with
servers can be part of a client honeypot, including SSH, FTP, and SMTP.

Examples of client honeypots are HoneyC, HoneyMonkey, HoneyWare,

and HoneyClient.

5. Honeynets

The value of honeypots can be increased by building them into a network;
two or more honeypots on a network form a honeynet [2]. Integrating honeypots
into networks can provide cyber attackers a realistic network of systems to
interact with, and permits defenders a better analysis of distributed attacks.

6. Monitoring Tools in a Honeypot

Honeypots typically contain a set of standard tools, including a component
to monitor, log, collect, and report the intruder’s activity inside the honeypot. The
goal is to capture enough data to accurately recreate the events of the honeypot.
Data collection can be done in many ways, the most important of which are:

- Honeypot log files

- Packet sniffing (network sniffing or intrusion detection systems)
- Keystroke logging (or keylogging)

- Snapshot software

- Firewall logs

One example of a data capture tool used in honeypots is Sebek. It is an
open-source tool whose purpose is to capture from a honeypot as much
information as possible of the attacker’'s activities on the host by intercepting
specific system calls, or syscalls, at the kernel level. Sebek takes sophisticated
measures to conceal itself, because honeypot monitoring software needs to
function as stealthily as possible, so the intruder cannot detect it. Otherwise, the
game is over and the honeypot defeated.

As part of the defense-in-depth approach to information security (multiple
layers of security controls), and a critical part of honeypot architecture, intrusion
detection systems are deployed to detect potential incoming threats based on
signature sets or anomalies. Although they are passive, they can overwhelm
administrators with alerts instead of responses or actions against detected
attacks. To address this problem, intrusion prevention systems can be used with
higher thresholds for alerts; they extend the detection capability of IDS to include
automated controls in response to cyber-attacks. For instance, they can ignore,
block, or modify packets, preventing the success of the exploit. This active
capability, however, comes at a cost to the performance of protected networks or
systems. Snort is probably the most popular and well-known intrusion-detection
system. It is useful in disabling attacks on a honeypot and for later analysis of the
data, with the goal of detecting and understanding cyber-attacks against
honeypots.

B. ANTI-HONEYPOT TECHNOLOGY

When security professionals started to include honeypots and honeynets
in their arsenal for information defense, cyber attackers reacted by creating tools
to detect or disable honeypots. The use of this anti-honeypot technology means
that honeypots were affecting the activities of attackers [4].

If an attacker detects a honeypot, most of the time that attacker will avoid
it and go to another place. But there is the risk that an attacker could compromise
the honeypot and use it to attack other computers on the local network or

Internet. The attacker could also try to disable it, delete the data, format the hard
7

drive, or post its address on hacker websites to prevent other attackers from
begin ensnared by it. In any case, it results in the honeypot’s defeat.

Most attackers will not bother to compromise a honeypot; however, if the
honeypot is a high-priority attack target like a military command-and-control
system, and the attacker is a foreign country, manipulation of that honeypot
might be desirable. To accomplish such manipulation, several techniques and
tools useful to cyber attackers for footprinting or analyzing systems can be
reused or adapted. Some of these tools can detect suspicious environments like
virtual machines, keyloggers, and debuggers. Additionally, most software used to
build and run honeypots has distinguishable characteristics that give attackers
clues, such as recognizable directory and file names. User-mode Linux and
VMware might be detected in this way.

Another approach to identifying honeypots is to experiment with detecting
data collection tools like Sebek. For example, it is possible to detect Sebek by
measuring execution time of the read() system call; excessive delays in the
execution of some processes or a higher load than normal in a CPU are also
good hints. Specific requests and responses to corrupted packets could give a
clear warning to the attacker of the presence of Honeyd or—if there are more
active responses—LaBrea Tarpit.

There is also commercial honeypot-detection software available, such as
Send-Safe Honeypot Hunter. This tool opens a local fake e-mail server on port
25 (SMTP) and asks each proxy to connect back to itself. If the proxy claims that
a session is OK when there is no related incoming session, a possible honeypot
is detected.

Table 2 lists some honeypots, their associated characteristics, and their

potential exploits.

Honeypot/Honeynet

Typical Characteristics

Methods for

Detecting the

Honeypot

BackOfficer Friendly

Restricted emulation of

services and responses

Send different requests and verify
the consistency of responses for

different services.

LaBrea Tarpit

TCP window size 0;
bogus MAC address

Check persistent TCP window size
0 and MAC address (0:0:0:f:ff:ff).

Honeyd

Signature based
responses;

same clock for every host

Send a mixture of legitimate and
illegitimate traffic, with common
signatures recognized by targeted
honeypots. Analyze timestamps of

the hosts.

Snort IPS

Modification actions;
suspicious packets could

be dropped or modified.

Send different packets and verify
the existence and integrity of

response packets.

Virtual Honeynet

Virtualization and system

Detect virtual hardware by name
and VMware MAC addresses.

(VMware) files)
Probe for existence of VMware.
Scan for active logging process or
Active tcpdump increased round-trip time (for

session or Sebek

Logging processes

instance, due to read() in Sebek-

based honeypots).

Table 2.

Characteristics of some honeypots and ways to detect them

THIS PAGE INTENTIONALLY LEFT BLANK

10

1. DESCRIPTION OF THE APPLICATIONS

We used several applications to implement the honeypots and to analyze
the results: VMware, Honeyd, Snort, Microsoft Log Parser, Wireshark, Security
Onion and Fedora 14.

We will describe the applications used in the implementation, with a quick
analysis of the methods to detect them, some countermeasures, and finally the

software used to analyze the results.

A. HONEYD

Honeyd is an open-source program released under GNU General Public
License that allows a user to set up and run multiple virtual hosts on a network.
These virtual hosts can be configured to mimic several different types of servers,
allowing the user to simulate many different computer-network configurations.
The hosts can be configured to run arbitrary services, and their personality can
be adapted so that they appear to be running certain operating systems. Honeyd
enables a single host to claim multiple IP addresses. In this way, Honeyd deters
adversaries by hiding real systems in the middle of virtual systems.

This daemon software offers several interesting features: It is possible to
Ping the virtual machines, or to run a traceroute to find their forwarding packets.
Any type of service on the virtual machine can be simulated according to a
simple configuration file. Instead of simulating a service, it is also possible to
proxy it to another machine, even to the source. The different personalities
simulate operating systems at TCP/IP stack level; this configured personality is
the operating-system fingerprint that scanning tools like Nmap (Network Mapper)
or Xprobe would return.

Although Honeyd is considered a low-interaction honeypot, it has powerful
features to run services through scripts that could be configured to go beyond
simple port listening and give responses to intruders. In this way, we can
increase the level of interaction of the honeypot. Honeyd can be used to create a

virtual honeynet or for general network monitoring. It supports the creation of a
11

virtual network topology, including dedicated routes and routers. The protocols
can simulate latency and packet loss to make the topology seem more realistic.

Honeyd software provides two types of logs that are useful to analyze.
Network packet-level logging gives an overview or details of what kind of traffic
the honeypots receive, and system logging gives more detailed information about
the ongoing traffic. Honeyd can be used for two purposes: distracting potential
hackers or catching them in a honeypot. Either way, the hackers will be slowed
down and subjected to analysis.

Unfortunately, Honeyd has not been updated recently and some features,
like operating-systems fingerprinting, do not work well with the later versions of

Nmap and Xprobe.

1. Detection of Honeyd

Honeyd software running on a computer, or the virtual hosts created by
Honeyd, could be detected in several ways.

One method is to flood one honeypot with pings or another CPU intensive
process. This honeypot machine will use its resources to respond to this request,
and as a consequence, all other simulated machines will become slower.

Another possible method is related to time and latency. Apart from the fact
that the responses in the simulated systems in the honeynet will always be a little
slower than a real system, we could compare clock timestamps of several
different components of the net. Normally, every computer will have a slightly
different timestamp because their hardware is different. With Honeyd, the
timestamps will be more consistent.

Another way to detect Honeyd, is to analyze the responses of the
machines to some uncommon packets and try to find discrepancies on the
responses. For Honeyd, this happens when a TCP packet, with SYN and RST
flags, is probed to an open port. Honeyd will send a reply, while most other
machines will not.

Another method to detect, and maybe attack, Honeyd is through packet

fragmentation. This method exploits a vulnerability related to the way Honeyd
12

reassembles fragmented packets. Honeyd checks the source address,
destination address, and identification number but not the protocol number. An
adversary could send a carefully prepared fragmented packet with mixed
protocols that when reassembled by Honeyd could produce a reply packet or
execute some attack, whereas normal operating systems would just discard
them.

To prevent detection of Honeyd, countermeasures are periodically added
to new versions of the software. For example, versions starting from 0.8 solved
the clock timestamp problem by providing a different clock skew (timing
difference) to each operating system and each virtual honeypot. Additionally, the

wrong replies to TCP packets with SYN and RST flags are now patched.

B. VMWARE

VMware software provides a virtualized set of hardware to the guest
operating system. VMware software virtualizes the hardware for a video adapter,
a network adapter, and hard disk adapters to give the appearance of an x86
hardware platform. This allows the installation of almost any operating system,
while the host provides pass-through drivers for guest USB, serial, and parallel
devices. In this way we could run, for example, a guest Linux OS over a
Windows OS host.

The virtualization capabilities of VMware software give us an easy way to

develop a virtual high-interaction honeypot.

A disadvantage of VMware is that it is relatively easy to detect a VMware

machine in several ways.

By default, the MAC address of NIC will be 00:0C:29, 00:50:56, or
00:05:69, the MAC addresses assigned to the vendor VMware by the IEEE. With
these restrictions, if the attacker is in the same network, the MAC address will be

immediately detected.

13

The names of IDE and SCSI devices (HD and CDROM) are clearly related
to VMware: VMware Virtual IDE Hard Drive, NECVMWar VMware IDE CDER10,
and VMware SCSI Controller.

The PCI vendor string and device ID of video adapter, VMware Inc PCI
Display Adapter, is visible. Finally, the I/O backdoor in port 0x5658 (22104 in

decimal) that can be used to configure VMware during runtime is visible.

1. Countermeasures against VMware Fingerprinting

There are ways to prevent an attacker from easily detecting the VMware
machine or a virtual environment.

There are hex editors that could be used to edit the VMware binary file,
“vmware-vmx.exe”. We could search for Virtual IDE Hard Drive or Virtual IDE
CDROM, and change them to names more appropriate to hide the VMware
application. In Linux, this can also be done automatically by using scripts that are
made to patch VMware. One such script was made by Kostkya Kortchinsky, a
member of the French Honeynet Project. This Linux script gives the option to
change the name of the IDE devices (HD and CDROM), SCSI devices (HD and
CDROM), PCI vendor and device ID of the video adapter, and the 1/0O backdoor
used by VMware.

An appropriate configuration of the OS could prevent the VM system from
being fingerprinted and detected. For example, we need to give each virtual
machine enough main memory to be credible, such as 512 MB or above. This
change could be done through the VMware Virtual Machine Control Panel. Also,
we should change VMware MAC address because the default MAC address
assigned by VMware always starts with 00:0C:29, 00:50:56, or 00:05:69.

Operating systems or VMware provide a way to change the MAC address,
but we need to be careful to match the numbers to an existing vendor that also is

related with changed names of other devices.

14

C. SNORT

Snort is a free, cross-platform, open-source network intrusion prevention
system and network intrusion detection system, created by Martin Roesch, a
respected authority on intrusion detection and prevention technology.

Snort’'s network-based intrusion detection system has the ability to
perform real-time traffic analysis and packet logging on Internet Protocol (IP)
networks. Snort performs protocol analysis, content searching, and content
matching. The program can also be used to detect probes or attacks, including
operating system fingerprinting attempts, common gateway interface, buffer
overflows, server message block probes, and stealth port scans.

Snort can be configured in three main modes: sniffer, packet-logger, and
network intrusion detection. In sniffer mode, the program will read network
packets and display them on the console. In packet-logger mode, the program
will log packets to the disk. In intrusion-detection mode, the program will monitor
network traffic and analyze it against a defined set of rules. The program could
then perform a specific action based on what has been identified.

The rules we used to run Snort were the Sourcefire Vulnerability Research
Team (VRT) rules, which are the official rules available for the program. We used
the latest VRT rules that were available free to registered users, rules an average
of 30 days old when released.

The software provides a detailed alert log, which can be shown in different
formats, like a text file or a pcap file, which store the packets associated with the

alerts so they can be analyzed with software like Wireshark.

D. WIRESHARK

Wireshark is a free, open-source packet analyzer. It is used for network
troubleshooting, analysis, software and communications protocol development,
and education. This software was originally named Ethereal, but it was renamed
Wireshark in May 2006.

15

Wireshark works in a similar way to tcpdump, but with a graphical front-

end, plus several sorting and filtering options.

E. MICROSOFT LOG PARSER

The Microsoft Log Parser is a powerful and very flexible command-line
tool that provides universal query access to text-based data such as log files,
Extensible Markup Language (XML) files, comma-separated values (CSV) files,
and tab-separated values (TSV). It also provides universal query access to key
data sources on the Windows operating system such as the Event Log, the
Registry, the file system, and the Active Directory. The results of the query can
be custom-formatted in text-based output, or they can be exported to targets like
SQL, SYSLOG, or Excel.

F. SECURITY ONION

Security Onion is free distribution created by security expert Doug Burks,
which could be either used as a LiveDVD or installed in the hard drive as a virtual
machine. It contains software used for installing, configuring, and testing intrusion
detection systems based on Xubuntu 10.04 Operating System and contains
Snort, Suricata, Sguil, Xplico, Nmap, and many other security tools specially
compiled for use in intrusion detection. According to its creator, the software is
hardened for its security function.

G. FEDORA 14

Experiments were conducted in an operating system based on Red Hat
Linux Fedora 14 (Laughlin). This was the last version available at the beginning
of this study.

16

V. METHODOLOGY

A. OBJECTIVES

The objective of the main experiment was to deploy a honeynet easily
accessible to the Internet, and which could be scanned and attacked. We tried to
maximize the interaction with possible attackers, meaning to maximize the
number, variety, and duration of attacks. If this is the case, then the honeypots
are more successful and difficult to detect or avoid. To do this, machines were
simulated using the software Honeyd. The analysis of the number of attacks on
them can be compared with the attacks on other hosts of the network, giving us a
good idea about how effective the honeypots created with this software were in
hiding or protecting the real systems.

We attempted to find the answers to the following questions:

a) How did our simulated network look from the outside?

b) Were the emulated operating systems well simulated by Honeyd?

c) What attacks did the network receive?

d) Did we receive more attacks using Honeyd than without?

e) Did Honeyd attract attacks, diverting them from the real systems?

f) Were there differences in the number or kinds of attacks between the

emulated operating systems, protocols, ports, or services?

g) Did the real laptop (Windows XP) and the VM (Fedora 14 or Security

Onion) running Honeyd get compromised?

h) What can we do to make the simulated hosts more credible?

i) Could Honeyd be useful in a production environment?

17

B. THE EXPERIMENT

The experiment was run at the Naval Postgraduate School campus using
a single laptop running Windows XP as host; the laptop also ran first a Fedora 14
Virtual Machine and later a Security Onion VM, both using VMware as guests.
This laptop was connected by Ethernet to one port associated to a special
network. This network, known as PacBell network (63.205.26.64/27), is a small
network at NPS that is outside the protection of the main firewall. It has 32 IP
addresses, of which around 10 of them are normally used. We used seven other
IP addresses for this experiment, all of them monitored and working as
honeypots.

We used a hub to connect to the network because the experiment
coexists with other tests and honeypots. One of the latter is a real host running
Windows XP that can be considered part of our experiment, although it is
production system.

On the Windows machine we installed Snort 2.9 with the VRT rules. Snort
was configured to log comma-separated values (CSV) files, and create tcpdump
files for the alerts, which could be read with Wireshark. On the Fedora virtual
machine we installed Honeyd 1.5c, which generated its own packet and system
logs. At the beginning of the experiment and between every run, both machines
were updated and patched to harden them against possible attacks. Snort was
also updated when a new set of rules available for registered users was
released.

We tried different configurations, each of which ran for approximately one
week. We used the following criteria to make changes:

- In general, we went from simpler to more complex.

- Using previous results, we discarded the less successful
configurations in terms of amount of traffic and number and variety
of alerts.

- We changed the relation between IP addresses and the operating

systems randomly.

18

- A couple of times we also ran the experiment without honeypots or
even without the guest operating system to study the normal traffic

on the network.

Figure 1 shows a diagram of the network architecture used in the experiment.

Figure 1. Network architecture.

19

SUMMARY OF CONFIGURATIONS USED

In week 1 we ran only the host computer with the Snort IDS to have

a baseline for the normal traffic of the monitored network.

In week 2 we ran Honeyd in the guest virtual machine, mistakenly
by default, for a long weekend. This meant that Honeyd ran
claiming all the 32 addresses of the network. (Honeyd is much
more aggressive than similar programs like LaBrea Tarpit in
capturing IP addresses.) We noticed a great increase in the amount
of traffic and alerts until the Ethernet connection was closed by the
NPS Information Technology and Communications Services
department because the experiment was producing IP address

conflicts with the valid users of the network.

In week 3, we ran Honeyd on the guest virtual machine claiming
five addresses: three simulating Windows hosts and two simulating
Linux hosts. Every host had a couple of open ports related with the
operating system running—for example, NetBios ports (137, 138,
139) open for Windows hosts or to simulate certain services, like
port 80 open for HTTP or port 25 open for SMTP.

To the set of virtual machines we added one running the Honeyd

and one as the host for VMware.

In week 4 we configured a more elaborate deception that included
simulated services (some included in the software Honeyd and
others downloaded from the Web page). In addition, we kept most
of the open ports and used a more credible ports status.

Two Windows OS computers were simulated and three with Linux
OS. Every computer had several TCP and UDP open ports and

some emulated services like SMTP, HTTP, FTP, SSH, Telnet,
20

NetBIOS, POP3, and IMAP. We also used the proxy function of

Honeyd in a couple of ports to redirect the attacks to its source.

In week 5, we used a configuration similar to the previous week but

without the presence of the considered “production” host.

In week 6, after noticing a decrease in the traffic and number of
alerts of the previous configuration, we made some changes to it.
Thinking that in some way attackers could be deceived, the IP
address of the VM host was switched with that of one of the
honeypots. This machine was changed to a Security Onion suite
instead of Fedora 14 because it was supposed to have better
monitoring capabilities and be hardened against possible attacks.

The rest of the configuration was similar to the previous week.

In week 7, although the number of alerts did not increase
significantly, we continued with a similar configuration with respect

to the previous week, with several scripts running on each host.

In week 8, due to the clear difference in the amount of interactions
with emulated Windows and Linux operating systems, we emulated
only the Microsoft Windows OS. Analysis of the results so far
showed us that not-credible emulated services are probably worse
than simulated open ports; as a consequence, we tried again with

only open ports and no services running.
In week 9, considering the good results obtained in week 8, we

continued with a similar port configuration using four of what

appeared to be the most successful scripts.

21

In week 10 we ran the experiment without Honeyd to check again

the normal behavior of the network.

In week 11 we ran the experiment without Honeyd and even
without the guest virtual machine (like week 1, with better tools for

analysis), to check again the traffic in the network.

In week 12 we ran Honeyd with the same configuration as week 9.

In week 13 we continued the same previous configuration, adding a
Perl script with a fake Telnet server in port 23 on host .79, and
using the newly created personalities for Windows Server 2008 and
Windows XP Service Pack 3.

In week 14 we tried the last control run without Honeyd running.

In week 15 we used the same configuration as week 13, but we
replaced the fake Telnet server with a fake internal Web server in
maintenance status and we included the proxy function in port 445
in one honeypot, in order to send back to the source every packet
the virtual host receives in this port. Also, we switched the IP

addresses of four honeypots.

A detailed configuration for every week is available in Appendix A.

D. METHODOLOGY TO ANALYZE THE RESULTS

Every week, we made a quick analysis of all the information available,
using some programs and tools to assist us. At the end of the study, we made a

more detailed review.

22

As we learned what worked and what did not, we used different logs,
scripts, tools, and software to better analyze the information captured. This
approach required some changes in the methodology and log formats, and as a
result, there was a significant difference in the amount of work and information
available between the first and last weeks.

We noticed that some of the default formats of the logs are not easy to
order or parse for analysis, such as the text alert logs created by Snort.
Therefore, we chose the comma-separated values (CSV) format for Snort alerts.

Every week we collected the following logs: Snort summary (displayed on
the screen) in a text file, Snort alerts in CSV format, Snort alerts in PCAP format,
Honeyd packet logging in text format, and Honeyd system logging in text format.

To analyze Snort alerts, we used Microsoft Log Parser 2.2 in conjunction
with scripts in SQL language and HTML templates, to display the alerts in a more
friendly way using Web pages. We used some code samples from Giuseppini [5].
For Honeyd logs we also used Microsoft Log Parser 2.

We created “analysis.bat,” a small batch program using Log Parser which
creates a CSV file with the column headers included. It generates several files
and folders by calling six SQL query scripts that produce results in HTML
template format. The results of the queries are:

Alerts index: an HTML file that counts the different alerts and displays
them in descending order of count.

Alerts details: a folder with an HTML file for every different type of Snort

alert. Each file displays in HTML format the information related to the
corresponding alert.

Source index: an HTML file that lists the different source IP addresses and
displays them in descending order of count.

Source details: a folder with an HTML file for each source IP address

related to a Snort alert. Each file displays in HTML format the information related

to the corresponding source IP address.

23

Destination index: an HTML file that lists the different destination IP

addresses and displays them in descending order of count.

Destination details: a folder with an HTML file for each destination IP

address related to a Snort alert. Each file displays in HTML format the
information related to the corresponding destination IP address.

We also created “graph_analysis.bat,” a small batch program for Log
Parser that generates graphs for several kinds of information: top alerts, top
source IPs, top destination IP, alerts per hour, top source port, top destination
port, and top protocol.

To analyze Honeyd logs, we create “honeyd log_analysis.bat,” another
script in Log Parser. It parses the text file “honeyd.log” related to Honeyd packet
logging, generating a CSV file that sets the column name headers to view and
process using Excel. This file was useful because it allowed us to see how
relatively effective the honeypots were. This was in relation to the interactions
they had with other IP addresses, not necessarily alerts or attacks—in other
words, the amount of traffic they could attract. With this method, we could quickly
compare different honeypot configurations.

The code and a sample of the results are included as appendices.

With the help of these tools and programs we obtained several statistical
values related to the traffic, number of alerts, type of alerts, protocols, and

relevant times, all of which gave us much useful information.

24

V. ANALYSIS OF THE RESULTS

A. THE EXPERIMENT VIEWED FROM THE OUTSIDE

If an attacker scans the network that we set up for this experiment from
the outside it is easily identifiable as a government or education resource.
Executing a traceroute to any host in the network would show that the name of
the last router is clearly associated with the Naval Postgraduate School (see
Figure 2). This situation could either deter hackers or increase their interest. But
the transparent routeraddress should be easy to fix in other deployments.

Figure 2. Execution of traceroute from the outside on one IP address of the
network

B. HONEYD AS A HONEYPOT

After analysis of the data obtained in weeks 1, 10, 11, and 14, without
Honeyd running, we estimated the baseline behavior of the network—the normal
network levels of traffic and alerts. Table 3 shows the results.

25

week 1 | week 10 | week 11 | week 14
Number of packets 438661 | 618723 | 541740 | 518659
Number of alerts 388 1325 756 488
Different alerts 4 13 16 5
ICMP alerts 388 757 476 488
TCP alerts 0 568 270 0
UDP alerts 0 0 10 0
Table 3. Statistics of alerts in weeks without Honeyd running

Tables 4 and 5 show corresponding data for weeks when Honeyd was

running.

week 3 | week 4 week 5 week 6 | week 7
Number of
packets 1191410 | 1313693 701771 | 906893 | 7